
Continuous Assurance: Continuous Integration meets Containers Security
Jordan Alexis Caraballo Vega, George Rumney, John Jasen, Jasaun Neff

1University of Puerto Rico at Humacao, Department of Mathematics, Humacao, PR
2High Performance Computing Branch, NASA Center for Climate Simulation (NCCS), NASA Goddard Space Flight 

Center, Mail Code 606.2, Greenbelt, MD, USA

CI at the NCCS
Continuous Integration (CI) is a software development technique

where developers integrate code into one or more shared repositories

on a frequent basis. CI key principles reside in revision control, build

automation, and automated testing. It has the capacity of decreasing

debugging time while increasing development productivity.

Based on security concerns, the NCCS has refined the idea of

enhancing CI with Continuous Assurance (CA) techniques. The aim of

this project is to research and build a reinforced CI/CA infrastructure

able to significantly reduce security risks and monitor the build

processes. Added features will include voting to approve/disapprove

the associated workflows and any changes.

Figure 1. Default CI workflow. Phases in their respective order include: developers committing to 
a version control repository, pulling the commit, building the software project, and testing the 
product in an environment. At the end, notifications are sent to the corresponding developers.

Security Risks Involved in CI
While in an ideal world CI itself sounds like the perfect approach to

boost the productivity of software teams, its exposure to the network

makes it vulnerable to various kinds of malicious attacks. Some of

these common vectors include:

- Remote Code Execution (RCE)

- Deserialization

- Cross-site request forgery (CSRF)

- Information Disclosure

Additionally, these software projects rely on unit tests that in the end

lack the ability of detecting bad programming practices that could lead

to further security risks. The idea behind this project is to strategically

implement security standards in each one of the CI development

phases (Figure 2).

Container Images Workflow – CIS & SCAP Compliant

Software Project Workflow

Containerized Software Application Workflow

Conclusion and Remarks

Methods: Continuous Assurance Taking Over

Visualizations and System Metrics

By enforcing the execution of several security tools in each phase,

teams will be able to find and fix issues and vulnerabilities early in the

development process. This approach will also prevent big architectural

flaws that are sometimes introduced in software projects that are not

integrated regularly. These security tests will cover the majority of the

security vectors involved in software and systems development.

Figure 2. CI/CA reinforced workflow. One or more security tests will be performed after each 
phase. All projects must pass an initial vetting process that will be approved by the Security 
Team. After the workflow is approved, the process can continue automatically until a major 

change or new unapproved vulnerabilities are found. 

Static Source 
Code Scan

Compliance and 
Vulnerabilities Scan

OWASP ZAPIssues are Notified

Java and C++ projects were developed on Git

to simulate the interaction of users within the

CI infrastructure. An additional Fortran project

was cloned from an existing GSFC team.

The previous workflow took care of source code vulnerabilities that could be found on

the repository, however it did not validate the image where it was being built.

Therefore, a workflow to validate container images and to prevent RCE was built.

Bamboo was used as the CI platform. A new

project was created for each Git branch, and

a default job that gets triggered after any

commit to the repository was configured.

Since these software projects were not web applications, the only security test

performed was the execution of static source code analysis tools for each

programming language. Figure 3 has an example of this workflow. By adding these

tools we can prevent inside threats that could come from the source code itself.

Figure 3. Software project workflow. This workflow was tested with and without Bamboo’s 
native agent. From left to right: Bamboo job tasks, build step output, several source code scan 

tools, and simple metrics regarding the project progress.

At this time, the NCCS has an infrastructure capable of fulfilling CI/CA needs. Thanks to this approach, it can be concluded

that CI workflows need to be reinforced with CA techniques to prevent additional security risks that the execution and

integration of software could bring into play. By isolating builds into containers we are able to add one protection layer to

the process. These techniques hold the potential to speed up the development of software at the NCCS and could serve

as a testing environment for system administrators. Future work will include the integration of new tools and its

deployment. The author wants to thank the NASA Minority University Research and Education Scholarship and his

mentors for their exceptional contribution. For further references, you may contact the author of this poster.

As a team, it is extremely important to monitor the overall

progress of each project. Therefore, each workflow in

Bamboo is equipped with system metrics that report the

status of each project as a function of time. This feature

will enable the notification of management if there are

continuous integration issues or security flaws that

could be solved or attended. An additional system

metrics report will be computed from the infrastructure to

measure the use of its resources and together with the

computing time that each project is taking.
Figure 6. Bamboo Python Project Visualizations. (a) Linear representation of the number of builds as a function of 

time. (b) Percentage of successful builds as a function of the number of builds through time. (c) Duration of the 
builds and (d) percentage of failed builds as a function of time.

This process will equip the CI/CA infrastructure with the ability of isolating builds and

validating the compliance of operating systems that will simulate production-like

images at the NCCS. CIS and SCAP Compliant systems will also satisfy BigFix scans and

will guarantee that the container is in optimal condition to be deployed as an agent.

Figure 4. Container Images workflow. A Dockerfile is defined that can download 
a local or remote image. SCAP compliance and vulnerability tests are ran using 

oscap-docker, while CIS tests are executed by docker-bench-security.

Build and Start Docker 
Images using Dockerfile

This last workflow seeks to integrate user’s software projects and NCCS approved containers

to simulate the behavior and interaction of the provided software services on a NCCS

production system while introducing security tools to validate its integrity.

Run scanners
Email/Jira the status 

of the container.

Figure 5. Isolated Software Project workflow. A security tool is implemented at each phase of the workflow. 
Tools go from source code analysis, to penetration testing. At the end, issues are followed on Jira.

A Python Django application was written and pushed to Git, while an additional PHP known

vulnerable application was taken from another repository. Each project was built on a

Docker container, scanned, and vetted. Vulnerabilities found at the Django application were

fixed and retested through the CI/CA workflow.

Trigger Build after Commit is 
Made to Repository

Run Static Source Code 
Scanners. Trigger Issue if 
Vulnerabilities are Found. Build container from 

Dockerfile and enable 
service inside container.

Run compliance and 
vulnerabilities assessments 

over the container.

Run OWASP ZAP 
Container and trigger 

passive and active scans


